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ABSTRACT

Much of the progress in solid-state microelectronics has come from the continued

reduction in size of the transistors that make up integrated circuits (ICs), having dropped

by a factor of 10 in the last decade to where minimum device geometries have reached

approximately 350 nanometers in mass production. Continued improvements in ICs will

require a device technology that can be scaled down to the sub-100 nanometer size

regime. There, the quantum mechanical nature of the electron becomes strongly evident,

and new design tools are required for a rawo-electronic semiconductor technology. The

combined scaling and speed advantages of these new devices could portend orders of

magnitude increases in the functional performance of future-generation ICs.

Quantum device performance is extremely sensitive to small variations in design

parameters. Accurate theoretical modeling is therefore required to guide the technology

development. Conventional device design tools are based on classical physics, and do not

incorporate quantum effects. New design tools are required to explicitly account for the

quantum effects that control charge transport at the nanometer scale. To further

understand and develop nanoscale device technology, this thesis will model the potential

energy function in a quantum dot, a nanostructure in which electrons are quantum-

mechanically confined in all three dimensions and which represents the inevitable result

of continued downscaling of semiconductor devices.



VI



TABLE OF CONTENTS

I. INTRODUCTION 1

II. DEVICE MODELING 5

A. STATUS OF CURRENT MODELING TECHNIQUES 5

B. NEED FOR NANOELECTRONIC MODELING
TECHNIQUES 6

III. HETEROJUNCTIONS AND HETEROSTRUCTURES 7

A. HETEROJUNCTIONS 7

B. QUANTUM HETEROSTRUCTURES 8

C. QUANTUM DOT FABRICATION 11

D. APPLICATIONS: THE RESONANT TUNNELING
DIODE 12

IV. TECHNICAL APPROACH 17

A. OVERVIEW 17

B. POISSON SCHRODINGER APPROACH 17

C. FINITE TEMPERATURE THOMAS-FERMI THEORY 18

V. MODEL DESCRIPTION 25

A. ASSUMPTIONS AND BOUNDARY CONDITIONS 25
B. MODEL INPUTS AND OUTPUTS 26

VI. RESULTS 29

VII. DISCUSSION 43

LIST OF REFERENCES 45

INITIAL DISTRIBUTION LIST 47

Vll



Vlll



ACKNOWLEDGEMENT

The author would like to acknowledge the financial support of

NCCOSC RDTE DIV, San Diego, for allowing the purchase of the

equipment used in this thesis.

The author also wants to thank Professor Luscombe for his

guidance and patience during the work in performing this

investigation.

IX





I. INTRODUCTION

The electronic devices that make up present-production integrated circuits

(ICs) have characteristic length scales of approximately 350 nanometers. From

extrapolations of the historic trend in device miniaturization, it is expected that

sub-100 nanometer-scale devices will be required in the next few years for future

generations of ICs. An essential characteristic of these nanoelectronic devices is

that the electron wavelength becomes comparable to the device size (the room

temperature de Broglie wavelength in Gallium Arsenide (GaAs), for example, is

about 30 nanometers). In this regime, the fundamental quantum properties of

the electron, in particular, its wave nature, dominate charge transport. It is well

established that electrons have wave-like properties because interference effects

such as diffraction have been observed. These interference effects must be

caused by some quantity whose behavior is oscillatory and which obeys the

superposition principle. This quantity is complex-valued and is referred to as the

wavefunction. [Ref. 1].

Consider the effect of the wave nature of matter on quantum confinement.

When an electron is confined to a region with dimensions comparable to its

wavelength, its allowed energies become quantized or restricted to certain

discrete levels, analogous to the allowed modes of a waveguide. In the case of a

superlattice, as is found in some of the resonant tunneling transistor designs,

the allowed energies further group themselves into bands which are separated

by gaps of forbidden energies. The existence of these gaps is due to the

interplay between the electron wavelength and the spatial periodicity of the



potential energy. In summary, the quantum confinement effect occurs in the

nanometer regime, and is a basic quantum transport phenomenon which can be

exploited for electronic device applications. [Ref. 2]

While the simplest practical nanoelectronic device is the resonant

tunneling diode (RTD), its mode of operation is typical of that of more complex

quantum devices. In the resonant tunneling diode, a one dimensional quantum

well structure, in which an electron is quantum-mechanically confined in one

direction (but is otherwise free in the remaining two dimensions) is used to

produce a nonlinear device characteristic that has innovative circuit applications.

Such a structure is said to exhibit one dimensional quantum confinement. While

to date the most progress has been achieved with one dimensional quantum

devices, e.g., resonant-tunneling transistors and integrated circuits, devices have

also been fabricated which feature two and three dimensional quantum

confinement, and are termed quantum wire and quantum dot structures,

respectively. Quantum dots, as shown in the scanning electron micrograph of

Figure 1, are the inevitable result of continued downscaling of semiconductor

structures and probably represent the smallest possible noncryogenic switching

devices. Thus, the development of one, two, and three dimensional quantum

dots provides a progression toward the ultimate scaling limits of solid state

electronics.



Figure 1 - Array of etched quantum dots. The horizontal

markers are 500 nm in length; the diameter of each dot is

100 nm. From Ref. [2].





II. DEVICE MODELING

A. STATUS OF CURRENT MODELING TECHNIQUES

Current IC technology is based on devices with minimum feature sizes of

approximately 350 nanometers. The characteristics of such devices can be

quantitatively described with models based on semiclassical physics and whose

transport features can be described by means of Maxwell-Boltzmann statistical

distributions. The current approach assumes that scattering is a process

unrelated to the device electrical fields and that it occurs instantaneously, both

temporally and spatially. This approach further assumes that electron potential

and density gradients are weak in the sub-100 nanometer regime. Under these

assumptions, present-generation devices are extensively modeled using

commercially available software design tools before fabrication is ever attempted

because the complexity of microelectronic devices is such that computer

simulation is the only practical means of producing realistic designs. An

experimental approach based solely on "trial-and-error" would prove prohibitively

expensive and time-consuming. Since conventional device design tools are

based on classical current-flow models, they do not incorporate quantum effects

and are of use only when the underlying quantum mechanical effects can be

hidden behind an average macroscopic parameter such as the electron mobility.

Obviously, charge transport in future device designs must be described in a way

that accounts for quantum effects. [Ref. 4]



B. NEED FOR NANOELECTRONIC MODELING TECHNIQUES

New design tools are required to explicitly account for the quantum effects

that control charge transport at the nanometer scale. Moreover, the need for

modeling is even greater at the nanoscale than it is in the submicrometer regime

because the electrical performance of quantum devices can be acutely sensitive

to small variations in design parameters. Quantum devices make use of the

energy levels of confined electrons to control the flow of charge, and the

potential energy environment that gives rise to such levels is a strong function of

the geometry and layer properties of the device structure. The number of critical

design variables also increases with the number of quantum confinement

dimensions. Thus, the development of future nanoscale devices that exploit

multidimensional quantum confinement effects will require even more

sophisticated quantum modeling tools. This thesis will take a first step in this

direction by modeling the self-consistent electron potential of a nanoelectronic

quantum dot in the absence of applied voltage. [Ref. 2]



III. HETEROJUNCTIONS AND HETEROSTRUCTURES

A. HETEROJUNCTIONS

Figure 2 illustrates the atomic arrangement in a crystal in which a

compound semiconductor (like GaAs) has been grown upon an elemental

semiconductor like Germanium (Ge), resulting in an abrupt change in chemical

composition at the boundary.

Figure 2 - Atomic structure of a heterostructure. From Ref. [5]

The lighter gray spheres are the Gallium atoms, the medium gray shows the

Germanium atoms, and the darker gray shows the Arsenic atoms. While a

continuous network of covalent bonds is observed throughout the structure, it is

apparent the types of atoms bond in a layered structure, called a heterojunction.

The construction of additional layers results in formation of a heterostructure.

The energy-band profile of a typical heterojunction is shown in Figure 3. The



band structure depends upon the chemical composition which explains the

unique band gap across each heterojunction.
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Figure 3 - Band profile of a typical heterojunction. From Ref. [5].

B. QUANTUM HETEROSTRUCTURES

The advantage of using heterostructures in quantum device design and

fabrication is that we may use wavefunction engineering to exploit the wave

nature of the electron. Wavefunction engineering is defined as the manipulation

of heterostructures and corresponding bandgaps for device design. It is based



on the principle that the wavefunction obeys the Schrodinger equation. The

frequency with which the wavefunction oscillates is proportional to the total

energy of the electron, and its wave vector is proportional to the momentum.

Likewise, the probability density of finding an electron at a particular place is

proportional to the squared magnitude of the wavefunction. [Ref. 1] Extremely

useful quantum effects occur when the potential energy of the electron (as a

function of position) has some abrupt features, as can be accomplished using

heterojunctions. The effective potential for conduction electrons (with no kinetic

energy) in a semiconductor is defined as the energy of the bottom of the

conduction band. Specific examples of the bandgaps of various combinations of

materials are illustrated in Figure 4. As can be seen, particularly in (a), (b) and

(c) of that figure, a layer of wider-bandgap semiconductor acts like an energy

barrier for electrons in the conduction band of a narrower-bandgap

semiconductor. These energy barriers can be used to confine electrons to small

regions of a device. Such a small region of narrower-gap semiconductor

bounded on two sides by regions of wider-gap semiconductor is called a

quantum well. In a quantum well, the electron is repeatedly reflected between

the energy barriers which sets up a standing wave pattern at a discrete

frequency. Discrete frequencies correspond to discrete energies, as required by

quantum theory, and the electrons occupying these states will occupy those

energy states.
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Figure 4 - Examples of bandgaps for heterojunctions of varying materials.

From Refs. [6,7].

In the case of a heterostructure quantum well, the electron energy levels are

determined by size quantization, because the very small size of the quantum well

( a few nanometers) causes the energies of the states to be sufficiently
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separated as to be easily observable. When wavefunction engineering is used

to determine the size and shape of a quantum well, a heterostructure that has a

particular set of energy levels can be designed. [Ref. 5]

C. QUANTUM DOT FABRICATION

Recent advances in microfabrication technology and the use of

semiconductor materials where the electron effective mass is relatively small

have enabled the production of quantum dot structures. Most frequently, the

process begins with molecular beam epitaxy (MBE) onto a stable substrate. An

MBE system is simply an ultrahigh-vacuum evaporator. By tightly controlling the

temperature of the single-crystal substrate and flow rate of the evaporated

molecules, high purity epitaxial growth may be achieved. Figure 5 shows an

example of an MBE system. As the crystal is grown, the effusion cell shutters

are opened and closed as necessary to produce the desired layering of

materials. [Ref. 8] The result is either a heteroju notion (the basis for an RTD) or

a multi-layered heterostructure. The final step is to "core out" a section of the

planar layered structure using electron-beam lithography techniques to produce

a cylindrical device with a lateral dimension comparable to the quantum

wavelength. Finally, a quantum dot is produced which is, essentially, a "man-

made atom" in which an electron is temporarily confined in all three spatial

dimensions. This three-dimensional confinement is provided by tunnel barriers

in the "vertical" epitaxial growth direction and by a depletion potential (extending

inwards from the lateral surfaces) in the lateral directions. Allowed energy states

are thereby virtually discrete. Since the electrons can tunnel out of the quantum

ii



dot region in finite time, they have a range of energies consistent with the

uncertainty principle. These types of states are called "quasi-bound." [Ref. 9]

Alunimum

Substrate

Holder

GaAs Wafer

Gallium

Molecular

Beams

Snutter

p-type

Dooant

Figure 5 - Schematic of a molecular beam epitaxy system (MBE) From
Ref. [5].

D. APPLICATIONS: THE RESONANT TUNNELING DIODE

The RTD is one particular device that is currently fabricated using the

aforementioned MBE technique. Operation of an RTD device is similar to that

of a quantum dot so a discussion of Figure 6, a typical RTD, is in order. Note the

dimensions in the figure are 400-500 nanometers - much larger than those of a

quantum dot. Observe in the figure that a GaAs quantum well is bounded by thin

layers of AIGaAs, a semiconductor material with a larger bandgap. These layers

12



must be thin enough to allow current to flow through the device in a controllable

fashion.

n
+
- GaAs top contact

50A undoped spacer

40A AIGaAs barrier

50A GaAs quantum well

40A AIGaAs barrier

50A undoped spacer

n
+
- GaAs buffer layer

SSP^s^srsss^^Pr?

GaAs substrate

doped contacts

quantum well

\ barriers

undoped spacers

Figure 6 - Design of a typical resonant tunneling diode

(RTD). From Ref. [8].

Such a flow occurs through tunneling, the quantum mechanical principle by

which an electron is able to transit through a region which is classically

forbidden. In this example, the contacts are doped with electrons (n-type) to

facilitate tunneling upon application of a bias to the device. The function of the

two undoped spacer layers is to reduce the diffusion of charge carriers into the

quantum well/barrier system and thereby reduce electron scattering which would

13



further broaden the electron states in the quantum well. In order to tunnel, an

electron must have exactly the same energy as that of the discrete state in the

quantum well. [Ref. 8] This may be accomplished by applying a voltage to one

side, as shown in Figure 7.

barriers

EF
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^
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N

..h.
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(b)

N

E,L

:^

K

.£.

(d)

!E*

Figure 7 - Resonant tunneling diode without (a) and with (b,c,d)

applied bias From Ref. [10].

In the figure, Ep and E|? represent the Fermi level in the emitter and collector,

respectively. E is the energy level at which tunneling occurs, and E L

C and E£

represent the energies of the conduction band edge of the emitter and collector,

respectively. In 7 (a), there is no applied voltage so tunneling does not occur. A

I4



low voltage is applied in 7 (b), still insufficient for significant current flow, though

some electrons will move through. When the voltage is increased, as shown in 7

(c), a resonance is reached whereby the electron energy on the emitter side

equals the energy state of the well. At that point, electrons are able to tunnel

through the barrier and current flows at a maximum level. This situation is

defined as a resonance. If one continues to increase the applied voltage, the

energy levels of the electrons will no longer match the level in the well, as can be

observed in 7 (d), and current flow will slow dramatically and eventually stop.

[Ref. 11] This situation can be described graphically by Figure 8, a typical IV

curve (current versus voltage) for an RTD.
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Figure 8 - Typical current versus voltage (IV) curve for

an RTD showing the energy levels corresponding to the

inflection points. From Ref. [12].
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IV. TECHNICAL APPROACH

A. OVERVIEW

One of the foremost quantities of interest in designing and understanding

quantum devices is the potential energy environment inside the device. Most, if

not all, of the insight necessary to understand device operation can be obtained

once this information is known. In addition, if the potential energy of the carriers

as a function of position within the device has been reliably determined, one can

then realistically calculate the internal laterally quantized energy levels that

govern the transport characteristics of quantum dots. Therefore, the primary

focus of this thesis is directed toward modeling and describing the potential

energy environment within quantum dots.

B. POISSON SCHRODINGER APPROACH

A conventional starting point for modeling the electron states of

semiconductors is to solve the effective-mass Schrodinger equation,

-fV-^vj^f) + V(?Mr) = E^(r), (1)

subject to the boundary conditions imposed by the device geometry. Here h is

Planck's constant, m*(r) is the electron effective mass, which varies from layer

to layer of heterostructure systems, V(r) is the electron potential energy function

within the device, y/(x) is the electron wave function and E is the total electron

energy. In the effective mass approach, one replaces the effects of the band

structure of the material with a single parameter, the effective mass, m*. One

17



therefore treats the electron in a semiconductor as if it were a free particle having

effective mass m*.

Obviously, a crucial piece of information that enters the Schrodinger

equation is the potential energy function, V(r). [Ref. 1] This is the part of the

potential energy that is related to changes in the device. This quantity must be

obtained from a calculation, by solving the Poisson equation, which relates V(r)

to the net charge density function within the device, p(r)

,

V • (fi(r)V V(r)) = ep(r) = e
2 {N

d (?)
- n[ V(r)]}. (2)

Here sir) is the dielectric constant, which varies from layer to layer of

heterostructure systems, N
d
(r) is the spatially varying doping density, e is the

magnitude of the electronic charge, and n is the number density function for

conduction electrons. A complicating factor in the semiconductor modeling

problem is that the conduction electrons are free to move around in the device,

and hence to alter their spatial density, in response to the electrostatic potential.

Thus, the device electron density function is actually a functional of the electron

potential energy function, and is described by the relationship n(r) = n[v(f)]

.

Equation (2) is therefore a nonlinear Poisson equation where the potential

energy and the electron density functions must be determined simultaneously, or

se/f-consistently, subject to the boundary conditions imposed by the device

structure. [Ref. 13]

C. FINITE TEMPERATURE THOMAS-FERMI THEORY

An alternative to the Schrodinger Poisson approach is to assume that the

electron states are plane waves and use an approximation technique to

18



determine the charge density function, which precludes having to solve the

Schrodinger equation for the actual electron wavefunction. This approach is

known as the Thomas-Fermi (TF) theory of the electron density, generalized to

the requirement of finite device temperature. In this approach, the electron

density function, n(r,T), at a temperature T, is taken to be given by

n(r,T) = N c (r,T)F
i
[(E

F
-E c (r))/k BT] (3)

where Nc(f,T) = 2m'(f)kBT/(2^
2

) , with m*(r) the effective mass for each

heterolayer, kB Boltzmann's constant, EF the Fermi level energy, and the function

F1/2 is a Fermi-Dirac integral, conventionally defined by

F>(r}) = -^idxx u2
[l + exp(x-Tj)y

i

. (4)

To derive Equation (3), one assumes that the local density function is equal to, at

any point in the device, the density found in a bulk system with uniform potential

and equivalent Fermi levels. In quantum devices, this assumption is only

approximately correct. [Ref. 14] J.H. Luscombe and coworkers at the Texas

Instruments Central Research Laboratory researched the applicability of the TF

approach and related the effective mass assumption to device modeling. They

determined that results obtained within the Thomas-Fermi approach are

consistent with the more accurate and realistic Poisson Schrodinger method.

[Ref. 2] Consequently, the TF approach is the one used to model electron

potential energies in this thesis. Equation (3) must be solved iteratively to

achieve a self-consistent solution, since the Fermi-Dirac integral is a nonlinear

19



As with the Poisson Schrodinger theory, the electrons both generate an

electrostatic potential, but, being mobile, are also able to respond to the potential

generated by all the other charges in the system. Thus, to achieve an electron

distribution in which all electrostatic forces are balanced (taking into account the

quantum statistics), the Poisson equation, Equation (2), must be solved

repetitively until this condition is achieved, subject to the appropriate boundary

conditions. The TF theory was originally designed to model the electron

density function in many-electron atoms; the same strategy can be used to

model the electrons in quantum devices. This treatment of the conduction

electrons is a useful theoretical approach on which to base nanostructure design

tools, providing a framework for understanding the roles that such system

parameters as the lateral dimensions, boundary conditions, and epitaxial

structure (doping densities, band offsets, effective masses and dielectric

constants) play in forming the device potential. [Ref. 15]

1. Self-Consistent Electron Potential

In quantum-effect, heterostructure-based devices, the conduction band

minimum varies spatially throughout the device and is denoted by E c (r) . There

are two dominant contributions to this function,

E
c
(r) = AE

c
(r) + V(r), (5)

where AE c (r) , the conduction band offset function, denotes the conduction band

minimum in a given heterolayer relative to that of some reference material in the

device, and is constant within each heterolayer. The quantity V(r) is the

electron electrostatic potential energy discussed above, V(f ) = -e<j)(r) , with <j)(r)

20



device, and is constant within each heterolayer. The quantity V(r) is the

electron electrostatic potential energy discussed above, V(r) = -e$(r) , with §(r)

the electrostatic potential. [Ref. 15] The Poisson equation in terms of V(r) is

given in Equation (2).

Historically, model development of the potential energy environment in

heterostructure devices retains only the first term in Equation (5), AE c (r) , and is

identified as the "flat-band" model. In the case of a bulk semiconductor, this can

provide a reasonable first estimate of the device potential, while for quantum dot

applications, this is an invalid approximation. [Ref. 15] The limitation of the flat-

band model is that it ignores the numerous sources of band bending in

nanostructures from, for example, Fermi level pinning, which becomes more

pronounced in significance as the device structure shrinks. Therefore, to have

an accurate understanding of the device potential, it is essential to solve for the

potential function using Equation (2) instead of assuming it a priori.

Electron densities can vary by many orders of magnitude over the

dimensions of the structure, from highly degenerate in certain regions, to

conditions of total depletion in others. Indeed, the unique transport properties of

quantum devices hinge upon the creation of this inhomogeneous electron gas,

where typically a depleted tunneling region separates neighboring electron

populations in equilibrium with the Fermi levels established by the respective

contacts. The role of the electron potential is thus two-fold: E c (r) determines

the electron states, while at the same time it is determined by the electrostatic

action of the carriers in screening the dopant charges (and by the boundary

21



conditions imposed by the nanostructure). Reliable predictions of electron

energy levels must therefore be based on self-consistent potentials. [Ref. 1 5]

2. Electrostatic Screening Process

The formation of the lateral confining potential, V(r), in quantum

nanostructures is the result of a nonlinear, electrostatic screening process which

is driven primarily by depletion properties of the system, the doping level, and

the lateral dimensions. The fabrication process includes a means by which the

quantum dot is cored out from a heterostructure. When this is completed, the

Fermi level on the exposed, lateral surface becomes pinned to a characteristic

value in the bandgap, as shown in Figure 9, a cross-sectional view of the

potential energy of a quantum dot as a function of radius. Electrons are

attracted to the lateral surfaces and a transfer of charge from the interior to

these surfaces takes place, resulting in a depletion layer just inside the surface,

the extent of which is defined as W. R is the physical radius of the column, and

the vertical dashed lines show the region in which conduction occurs. E F is the

Fermi level. While this behavior is well-documented and acceptable for

macroscale semiconductors devices, the depletion layer of a nanoscale device

can be a significant portion of its overall size. Moreover, at some point, a

quantum dot will be unable to be made smaller or total depletion will result - the

ultimate limit to downscaling of quantum devices. For these reasons, Fermi level

pinning and the associated depletion layer must be factored into the modeling

effort. [Ref. 5]

22



Figure 9 - Schematic illustration of the lateral (b-b') potential

of a column containing a quantum dot. From Ref. [5].

To implement a self-consistent calculation requires an expression for the

electron density function as a function of E c (r). As devices are made

progressively smaller, it becomes necessary to increase doping concentrations

to ensure an adequate supply of electrons. In the doping process, charge

carriers are placed in the contacts. These electrons tunnel into the quantum well

upon application of a voltage, thereby resulting in current flow through the

device. Moreover, one of the rationales for quantum devices is to scale device



size down to atomic dimensions, requiring the minimization of the depletion

layers. Heavy doping also works toward achieving this goal. Thus the contacts

of quantum devices are heavily doped, usually to the extent that the Fermi level

is pushed out of the band gap and into the conduction band. In this degenerate

regime the energy distribution of a population of electrons is described, not by

the classical Maxwell-Boltzmann statistics, but by the quantum Fermi-Dirac

statistics. Moreover, the Fermi-Dirac distribution function takes into account the

Pauli exclusion principle, another fundamental tenet of quantum theory. [Refs.

1,5]
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V. MODEL DESCRIPTION

A. ASSUMPTIONS AND BOUNDARY CONDITIONS

The computer program utilized in this thesis to calculate potentials,

QDOT, operates under the finite temperature Thomas-Fermi theory, as

discussed in Section IV.C. The Thomas-Fermi expression for carrier density is

then combined with the Poisson equation which yields a nonlinear differential

equation to solve for the self-consistent potential energy function. QDOT solves

this nonlinear Poisson equation, subject to boundary conditions, using a variation

of Newton's method known as nonlinear overrelaxation.

Cylindrical symmetry is assumed for the quantum dots. This allows

QDOT to model only a two-dimensional, radial slice of the complete structure.

Obviously, a non-cylindrical quantum dot of, say, a cube-type design, may not be

properly described by QDOT. However, this is not a major limitation as most

currently fabricated device structures are of the cylindrical design. An additional

assumption concerns the distribution of impurities. QDOT assumes that, within

each epitaxial layer, dopants can be described by their average density as they

provide a uniform background of charge density. The validity of this assumption

decreases with device size as inhomogeneities in the dopant distribution become

more significant. In the extreme case, device operation could be influenced by

the presence or absence of a single doping atom.

When solving the aforementioned nonlinear differential equation, one

requires a boundary condition in the lateral dimension. This is accomplished

through the phenomenon known as Fermi level pinning, discussed previously.
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The result of the surface pinning is a depletion region just inside the surface

which serves as the boundary.

B. MODEL INPUTS AND OUTPUTS

To run the QDOT program, the user specifies first the epitaxial structure in

terms of thickness, composition, and doping density for each epitaxial layer; then

the lateral information such as the radius of the post and the value of the Fermi-

level pinning energy for the exposed sidewalls; and finally the temperature. The

program then generates a three-dimensional figure of the self-consistent band-

edge surface. The output for a typical quantum dot design is shown in Figure 10.

In this design, the following data was input:

LAYER THICKNESS(nm)

CONTACT 50

DOPING
LEVEL(cm"

3
)

2.0e18

ALUMINUM
MOLE FRACTION

0.0

SPACER 15 1.0e15 0.0

BARRIER 5 1.0e15 0.3

QUANTUM WELL 5 1.0e15 0.0

BARRIER 5 1.0e15 0.3

SPACER 15 1.0e15 0.0

CONTACT 50 2.0e18 0.0

RADIUS: 50NM
FERMI LEVEL PINNING VALUE:
TEMPERATURE: 300K

0.7Ev

Table 1 . Model Input for a Typical Quantum Dot Device Structure

Note that device shown has no applied bias and will not conduct.

However, it is easy to see by referring to Figure 7 that application of a voltage will

easily enable current to flow through this modeled device. Many factors

influence the size and shape of Figure 10. The predominant force in determining
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the extent of the band-bending potential barrier is the degree of surface

depletion. This, in turn, is controlled by the lateral dimension and the value of

the Fermi level pinning energy at the sidewall. The height of the quantum well is

partially controlled by the width of the spacer layers. All the above variables

were investigated, with the results shown in subsequent figures. First, however,

a discussion of Figure 10 is in order.

Figure 10 shows a typical (and, notwithstanding a major technological

breakthrough, possibly the optimal) quantum dot design. One of the most

significant attributes of these devices is the turn-on voltage. As the number of

devices on a chip continues to increase, power dissipation becomes more and

more of a serious concern. Power dissipation can be improved by designing

devices with a lower power supply voltage requirement which will result in less

energy required for switching. In Figure 10, the "pedestal," as it is referred to in

this thesis, is high enough to where the device will have a fairly low turn-on

voltage (about 0.7 eV), but not so low that it is unable to effectively function in a

digital logic environment. There are plenty of conduction electrons (those below

the Fermi level, indicated in white in (a)) and an adequate radius within which

current will flow. This conduction radius is best seen in (c), the distance (about

28 nm) at which the potential line (red) crosses the Fermi level (V(r,z) = 0). The

dimensions, both depth and width, of the barriers and quantum well are

unchanged throughout all the plots as they are material dependent. All plots are

based on the same materials, GaAs in the well and AIGaAs in the barriers.
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Figure 10 - Plot of a typical quantum dot with radius 50nm, Fermi level pinning of

0.7eV, and spacer width of 15nm.

28



VI. RESULTS

The following figures show how electron potential energy is affected by

varying the radius, Fermi level pinning value, and spacer width. All plots should

be compared with Figure 10 to fully understand these results.
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Figure 1 1 shows that there is a very definite theoretical limit to quantum

dot downsizing, and the model radius of 10 nm has exceeded it. Aside from

having an enormous turn-on voltage, the entire device is contained within a

region of total depletion. Application of a bias will not change this; indeed, as

the voltage increases, the semiconductor material will ultimately break down!

The significance of the pedestal width is it effectively decreases capacitance and

thereby increases required switching energy. The net effect is that the IV curve

(Figure 8) would be shifted to the right and, hence, the device must operate in a

higher energy regime. The obvious result is that power dissipation becomes a

serious design consideration.
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Figure 1 1 - Plot of a quantum dot with a radius of 10nm. All other variables are

the same as Figure 10.
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Figure 12, a plot with a radius of 100 nm, shows the presence of many

electrons below the Fermi level. This is especially evident in (c), which evinces a

conduction radius of about 80 nm - a full 80 percent of the radius! As is

illustrated in (b), the device would have an extremely low turn-on voltage, a small

fraction of what is required for the device pictured in Figure 10. Unfortunately,

the low voltage may be taken to an extreme as is possibly what has happened in

this instance. The increased device diameter works toward reducing the

separation of states in the quantum well due to lack of lateral confinement. This

may have a negative effect on the logic levels as the "on" or "1" voltage level is

only marginally greater than the "off' or "0" voltage level.
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Figure 13, with a Fermi pinning value of 0.4 eV, is an example of a nearly

ideal device. The pedestal in (b) is lower and thinner than that shown in Figure

10 making it easier for electrons to flow. A flat-band region extends closer to the

surface of the device showing a conduction radius of about 36 nm, again, a

much higher value than that of Figure 10. These factors lead to lower depletion

of the structure and greater current flow. The problem with this design is that,

while device radius is fairly easy to control, Fermi pinning level is not, as it is a

material specific parameter. One possible solution would be to deposit metal

around the device forming a thin layer. One could apply a voltage to the metal

which would, in effect, modulate the Fermi pinning level at the surface.
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Figure 14 shows a plot with exactly the opposite effect seen in Figure 13

due to the Fermi pinning level being raised to 1.0 eV. The pedestal is very high,

which would result in a greater turn-on voltage than that depicted in Figure 10.

In fact, the higher pinning level leads to a significantly larger electron depletion

region. The conduction radius is about 23 nm, diminishing the number of

carriers available for current flow even if the turn-on voltage can be achieved.
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Figure 15 shows a plot of a device with a spacer width of 1 nm and that

would not effectively function as a semiconductor device. Hence, it has no

technological utility. The pedestal is down so far, the base of the quantum well

extends to beneath the Fermi level. This device would conduct immediately,

essentially functioning as a wire, and would lose its valuable nonlinear

characteristics. Another problem is there are so many electrons in the quantum

well, that electron scattering would broaden the energy width of the resonance,

leading to lower peak and higher valley current on the IV curve (as compared to

Figure 8). Finally, the turn-on voltage is so low, the device would be unable to

operate in a digital logic environment. Notice that (c) is identical to the

equivalent plot in Figure 10. This is because spacer width has no effect on the

size of the depletion region or conduction radius as will also be evident in the

final plot.
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Figure 16 demonstrates the effect of increasing the spacer width to 30

nm. Not surprisingly, the result is opposite that observed in Figure 15. The turn-

on voltage (as shown in the height of the pedestal) to operate this device would

be significantly higher than that depicted in Figure 10. The large difference

shows that spacer width is a significant design parameter. Also, note the

increased width of the pedestal, decreasing the capacitance and thereby

increasing required switching energy. Once again, (c) is identical to the

corresponding plot in Figure 10.
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VII. DISCUSSION

Chapter VI showed that Fermi pinning value, spacer width and device

radius are all important design considerations. While Fermi level pinning is the

most sensitive of the three, it is difficult to vary the Fermi pinning level in the

fabrication process, pending development of a means to apply a metal coating.

On the other hand, device radius is fairly easy to alter. One must bear in mind,

however, total depletion within the device occurs if the radius is made too small.

Increasing the radius beyond the 50 nanometer regime begins to introduce

trade-offs, however, and future technology may enable identification of an

appropriate device radius. Altering the spacer width is also relatively

straightforward, though neither increasing or decreasing the width to a

significant degree appears to be of value. Quite possibly, the optimal spacer

width will be around 15 nm, regardless of any technical breakthroughs.

The results presented herein underscore the great utility of theoretical

modeling. Device modeling incorporating quantum effects is especially superior

to the "trial-and-error" approach when designing at the nanoscale level. The

model outputs enable one to determine the most sensitive design parameters as

well as the effects of varying input data. Continued work in this area might focus

on modifying QDOT to incoporate a finite bias.
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